

Available online at www.sciencedirect.com

Science of the Total Environment An International Journal for Scientific Research into the Environment and its Restationship with Humanikind

Science of the Total Environment 387 (2007) 333-345

www.elsevier.com/locate/scitotenv

Short communication

Trace elements, PCBs and organochlorine pesticides in New Zealand common dolphins (*Delphinus* sp.)

K.A. Stockin^{a,*,1}, R.J. Law^{b,1}, P.J. Duignan^c, G.W. Jones^c, L. Porter^d, L. Mirimin^e, L. Meynier^c, M.B. Orams^a

^a Coastal-Marine Research Group, Institute of Natural Resources, Massey University, Private Bag 102 904, North Shore MSC, New Zealand ^b The Centre for Environment, Fisheries and Aquaculture Science, Cefas Burnham Laboratory, Remembrance Avenue, Burnham on Crouch,

Essex CM0 8HA, United Kingdom

^c New Zealand Wildlife Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University,

Private Bag 11 222, Palmerston North, New Zealand

^d AgriQuality Limited, PO Box 31 242, Lower Hutt, New Zealand

^e University College Cork, Department of Zoology, Ecology and Plant Science, North Mall, Distillery Fields, Cork, Ireland

Received 22 December 2006; received in revised form 4 May 2007; accepted 16 May 2007 Available online 17 July 2007

Abstract

Trace elements, polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticide levels were determined in tissues collected from stranded and bycaught common dolphins (*Delphinus* sp.) from New Zealand waters between 1999 and 2005. The concentrations of mercury (Hg), selenium (Se), chromium (Cr), zinc (Zn), nickel (Ni), cadmium (Cd), cobalt (Co), manganese (Mn), iron (Fe), copper (Cu), tin (Sn), lead (Pb), arsenic (As) and silver (Ag) were determined in blubber, liver and kidney tissue. PCBs (45 congeners) and a range of OC pesticides including dieldrin, hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) and its metabolites DDE and DDD were determined in blubber samples. Cr and Ni were not detected in any of the samples and concentrations of Co, Sn and Pb were generally low. Concentrations of Hg ranged from 0.17 to 110 mg/kg wet weight. Organochlorine pesticides dieldrin, HCB, *o*,*p'*-DDT and *p*,*p'*-DDE were present at the highest concentrations. Sum DDT concentrations in the blubber ranged from 17 to 337 and 654 to 4430 μ g/kg wet weight in females and males, respectively. Similarly, Σ 45CB concentrations ranged from 49 to 386 and 268 to 1634 μ g/kg wet weight in females and males, respectively. The mean transmission of Σ DDTs and ICES7CBs between a genetically determined mother–offspring pair was calculated at 46% and 42%, respectively. Concentrations of organochlorine pesticides determined in the present study are within similar range to those reported for Hector's dolphins (*Cephalorhyncus hectori*) from inshore New Zealand waters.

Keywords: Common dolphin; Delphinus sp.; Trace elements; PCBs; Organochlorine pesticides; DDT; Mother-calf transmission; New Zealand

* Corresponding author. Tel.: +64 9 4140800x41127; fax: +64 9 4439790.

E-mail address: k.a.stockin@massey.ac.nz (K.A. Stockin).

¹ The authors equally contributed to this work.

1. Introduction

Toxicological studies have investigated pollutant levels in several marine fauna including fish (Hoekstra et al., 2003; Alquezar et al., 2006), birds (Ryan et al.,

Table 1 Specimen details for common dolphins stranded and bycaught in New Zealand waters between 1999 and 2005

-		-		-	-				
Reference	Date	Sex	Length (cm)	Weight (kg)	Age (yr)	Body condition	Source *	GPS location	Region
WS99-14_30447	19/07/1999	М	215.0	102.0	_	Moderate	S	41°17′S, 174°46′E	Wellington Harbour, Wellington
WS00-01_30890	17/12/1999	М	196.0	98.0	_	Mild	S	35°10′S, 174°20′E	Deep Water Cove, Northland
WB02-01_32789	14/10/2001	М	227.5	134.0	11.0	Mild	В	40°07′S, 174°01′E	SW coast, South Island
WS02-14_33100	14/03/2002	М	172.0	58.0	5.0	Moderate	S	40°51′S, 175°01′E	Waikanae, Wellington
WB03-04_34086	17/10/2002	М	206.0	102.0	8.0	Mild	В	39°53′S, 173°40′E	SW coast, South Island
WB03-17_34705	30/04/2003	М	178.5	76.0	3.5	Mild	В	40°21′S, 170°00′E	SW coast South Island
WB03-18_34712	30/04/2003	М	199.5	88.0	8.0	Mild	В	40°21′S, 170°00′E	SW coast South Island
WB04-04_35613	17/12/2003	Μ	226.0	119.0	10.5	Moderate	В	37°10′S, 174°05′E	W Coast, North Island
WS04-19_36305	05/08/2004	М	174.0	64.0	8.0	Moderate	S	35°27′S, 174°43′E	Opahi Bay, Hauraki Gulf, Auckland
WS04-28_36737	14/12/2004	F	195.0	76.0	5.5	Fresh	S	36°46′S, 174°40′E	Lucas Creek, Hauraki Gulf, Auckland
WS04-29_36738	14/12/2004	F	199.0	73.0	10.5	Fresh	S	36°46′S, 174°40′E	Lucas Creek, Hauraki Gulf, Auckland
WS04-30_36739	14/12/2004	Μ	118.0	18.2	1.0	Fresh	S	36°46′S, 174°40′E	Lucas Creek, Hauraki Gulf, Auckland
WS04-32_36745	17/12/2004	F	99.0	9.8	0.5	Fresh	S	36°46′S, 174°40′E	Lucas Creek, Hauraki Gulf, Auckland
WS04-33_36746	16/12/2004	F	195.0	64.0	7.0	Fresh	S	36°46′S, 174°40′E	Lucas Creek, Hauraki Gulf, Auckland
WS04-34_36747	18/12/2004	F	189.0	69.0	10.0	Fresh	S	36°46′S, 174°40′E	Lucas Creek, Hauraki Gulf, Auckland
WS04-35_36751	18/12/2004	F	200.0	66.3	8.0	Fresh	S	36°51′S, 174°49′E	Orakei Bay, Hauraki Gulf, Auckland
WS04-36_36752	18/12/2004	F	195.0	73.0	5.0	Fresh	S	36°51′S, 174°49′E	Orakei Bay, Hauraki Gulf, Auckland
WS05-06_36823	26/01/2005	Μ	220.0	80.0	_	Mild	S	35°25′S, 174°44′E	Warkworth, Hauraki Gulf, Auckland
WS05-26_37521	27/07/2005	М	160.0	47.0	6.0	Mild	S	36°50'S, 174°40'E	Waitemata Harbour, Auckland

* B=bycaught, S=stranded.

1988; Mallory et al., 2005; Rothschild and Duffy, 2005) and mammals (Hobbs et al., 2001; Haynes et al., 2005; Roots et al., 2005; Ylitalo et al., 2005). Organochlorine (OC) compounds such as polychlorinated biphenyls (PCBs) are both chemically and physically stable within the environment, and thus classified as Persistent Organic Pollutants (POPs) within the Stockholm Convention. The lipophilic nature of such chemicals facilitates their accumulation along food chains where, in the case of top predators, they may bio-accumulate to high concentrations. Many toxicological studies have focused on the pollutant burdens in cetaceans, particularly in small toothed (odontoceti) cetaceans (de Kock et al., 1994; Minh et al., 1999; Fossi et al., 2004; Karuppiah et al., 2005). The high metabolic rate and elevated trophic position of odontocetes within food webs increase their likelihood of accumulating persistent toxins, such as organochlorine pesticides. These factors, in combination with the longevity and the large proportion of lipids present within cetaceans, facilitate bioaccumulation, a phenomenon that in some populations has resulted in high levels of toxicity (Hayteas and Duffield, 2000).

Several studies have examined the biological effects of contaminants such as PCBs, OC pesticides and trace metals on marine mammal health and life history (Subramanian et al., 1987; Kuiken et al., 1994; Wells et al., 2005). Certain organochlorines (e.g. dieldrin, lindane) are known to be particularly toxic in the early developmental stages of life and have been identified as endocrine-disrupting chemicals. Such chemicals may interfere with the production and metabolism of hormones responsible for the maintenance of homeostasis and the regulation of reproduction processes (Reijnders and Aguilar, 2002). In marine mammals, persistent pollutants have also been associated with a variety of toxic effects including immune suppression and the development of infectious diseases (Kuiken et al., 1994; Jepson et al., 2005), reproductive impairment (Reijnders, 1986; Schwacke et al., 2002; Wells et al., 2005) and the generation of tumours (De Guise et al., 1994).

The occurrence and distribution of marine pollutants has been extensively studied in northern hemisphere cetaceans (Jarman et al., 1996; Law et al., 1996; McKenzie et al., 1997; Parsons et al., 1999; Siebert et al., 1999; Watanabe et al., 1999 Frodello et al., 2000; Hernandez et al., 2000; Hobbs et al., 2001; Berrow et al., 2002; Law et al., 2005), where waters are generally accepted to be more industrialized. However, less information is available on the contaminant loads of marine mammals found in southern hemisphere waters (Borrell and Aguilar, 1999; Kemper et al. 1994; Vetter et al. 2001), with a particular paucity for data relating to New Zealand.

A range of organochlorine pesticides have historically been used in New Zealand including dichlorodiphenyltrichloroethane (DDT), dieldrin, heptachlor, hexachlorobenzene (HCB), chlordane, hexachlorocyclohexane (HCH) and aldrin (Buckland et al., 1998). However,

Fig. 1. Map showing Lucas Creek, Hauraki Gulf, New Zealand-the location of a mass-stranding of common dolphins used in the present study.

few published data relating to these compounds or their effects on biological systems within New Zealand can be found in the literature. Presented here are the first data relating to trace metals, PCBs and OC pesticide levels determined in New Zealand common dolphins (*Delphinus* sp.). We describe pollutant levels in males and females, and examine differences in pollutant loads between stranded and bycaught common dolphins. We investigate parent– offspring pollutant transfer between a genetically determined mother–calf pair, and discuss pollutant levels and their implications at the population level.

2. Materials and methods

2.1. Sample collection and storage

Tissue sampling was undertaken on fourteen stranded and five commercially bycaught common dolphins from New Zealand waters between 1999 and 2005 (Table 1). The majority of the stranded carcasses (n=8) were recovered from a mass-stranding that occurred in the Hauraki Gulf (Fig. 1, approximate latitude 36°10'S to 36°60'S) during December 2004. Bycaught samples originated from animals incidentally killed in the midwater trawl fishery for jack mackerel (*Trachurus* sp.) off the west coast of Auckland (37°10'S, 174°05'E) and in the South Taranaki Bight (40°10'S, 174°05'E).

All carcasses were examined and subjectively divided into three categories (*fresh, mild* and *moderate*) based on the degree of post-mortem autolysis evident (Table 1). Animals described as *fresh* typically live stranded and either subsequently died immediately prior to discovery (as determined by the presence of eye moisture and absence of rigour mortis) or were euthanased onsite by the Department of Conservation. *Mild* was assigned to carcasses which exhibited rigor mortis but which showed no obvious external signs of decomposition (e.g., odour, skin degradation and/or loss) were deemed to be *moderate*. No animals exhibiting advanced stages of decomposition (e.g., tissue autolysis) were included in the present study. Pathological examination and sampling was conducted according to standard protocols (Geraci and Lounsbury, 1993). Prior to sampling, external measurements (cm) and body weight (kg) were recorded (Table 1), and where possible, teeth and skin samples collected for age and sex determination respectively. Six to eight teeth were removed from the lower jaw of each specimen and preserved in 70% ethanol. Skin samples were removed from the dorsal fin of each animal and preserved in 95% ethanol.

Tissue samples were taken for PCB and OC analysis using standard protocols (Kuiken et al., 1994; Jepson et al., 2005). In summary, cross sectional samples of blubber adjacent to the dorsal fin were excised from each carcass using a stainless steel knife. Samples were placed in a hexane-washed glass container with an aluminium or Teflon-lined cap and stored at -20 °C. Sampling for trace elements was conducted using methods described in Zhou et al. (2001). Blubber, liver and kidney tissue was collected during postmortem examinations, and wrapped in aluminium foil prior to storage at -20 °C. Trace elements could only be assessed in animals that mass-stranded in the Hauraki Gulf, since liver and kidney tissues were not available from carcasses sampled outside of this region.

2.2. Age determination

Age was estimated by the examination of decalcified thin sections of teeth, following methods adapted from Slooten (1991). Due to the curvature of the teeth, care was taken to select teeth from which a complete section through the centre of the pulp could be obtained. Tooth sections were independently read by two observers (GWJ and PJD) at $16-80\times$ magnification and the number of dentinal growth layers (GLGs) assigned by consensus between the readers.

2.3. Sex and mother-offspring identification

The sex of most individuals was determined by direct anatomical examination during necropsy. However, in order to ascertain sex in circumstances where a full postmortem examination was not possible, molecular techniques were used, following methods outlined by Rosel (2003). Total genomic DNA (gDNA) was extracted from skin samples following a standard proteinase-K/phenolchloroform procedure (Sambrook et al., 1989). Sex was determined by a multiplex PCR reaction using primers detailed in Rosel (2003).

In order to assess pollutant transfer between parent and offspring, parentage analyses using mitochondrial DNA (mtDNA) and microsatellite loci were performed to identify mother–calf pairs in a nursery group of common dolphins that mass-stranded in the Hauraki Gulf in December 2004 (see Table 1). A 397 base pair (bp) portion of the 5' end of the mtDNA control region was sequenced using methods and primers detailed in Rosel et al. (1994), and multi-locus genotypes from a panel of 14 microsatellite loci were obtained as detailed in Coughlan et al. (2006) and Mirimin et al. (2006). The transfer rate of Σ DDTs and ICES7CBs between a mother and her calf was calculated using methods detailed in Borrell and Aguilar (2005).

2.4. Chemical analysis

Trace elements were determined in samples of blubber, liver and kidney by inductively-coupled plasma mass spectrometry (ICP-MS) or inductively-coupled plasma optical emission spectrometry (ICP-OES) using a Perkin Elmer ELAN 9000 and Perkin Elmer OPTIMA 3300 RL respectively. ICP-MS was used for those elements typically present at relatively low levels (e.g., tin, cobalt), whereas ICP-OES was used for elements that occur at higher concentrations (e.g., copper, zinc). Approximately 1 g of each tissue sample was digested in concentrated nitric acid with a trace of hydrofluoric acid. Full analytical quality control protocols were followed and all metals (other than chromium and silver) were analysed within the laboratory's International Accreditation New Zealand (IANZ) (No. 175).

Organochlorine pesticides and CBs were determined in blubber by high resolution gas chromatography-high resolution mass spectrometry (HRGC-HRMS). Extraction and quantification of hexachlorocyclohexanes; alpha-HCH, beta-HCH, gamma-HCH (lindane), dieldrin, heptachlor, heptachlor epoxide, alpha-chlordane, gamma-chlordane and DDT (plus metabolites p, p'-DDE, p, p'-DDD (also known as p, p'-TDE), o, p'-DDT, p, p'-DDT and 45 chlorobiphenyl congeners (CB1, CB3, CB4, CB15, CB19, CB28. CB37, CB44, CB49, CB52, CB54, CB70, CB74, CB77, CB81, CB99, CB101, CB104, CB105, CB110, CB114, CB118, CB123, CB126, CB138, CB153, CB155, CB156, CB157, CB167, CB169, CB170, CB180, CB183, CB187, CB188, CB189, CB194, CB196, CB199, CB202, CB205, CB206, CB208 and CB209) was conducted as follows:

2.4.1. Blubber extraction

Samples were thawed and a portion of the blubber tissue (approx. 10 g) was removed and chopped into small cubes (approx. 1 cm). The sample was accurately weighed and placed into a blender with powdered sodium sulphate and blended until the mixture was freeflowing. Each sample was subsequently packed into a

Trace elements detu	ermined	in the liver, k	kidney and	1 blubber o	of stranded	d common c	lolphins frc	om the H	auraki Gı	ulf, New Zo	ealand in	December 2	2004 (mg/k _i	g wet weig	ght)		
Reference	Sex	Tissue	Cr	Mn	Fe	Co	Ni	Cu	Zn	\mathbf{As}	Se	Ag	Cd	Sn	Hg	Pb	Hg:Se
WS04-28_36737	Ч	Blubber	< 0.1	0.085	9.4	< 0.02	< 0.1	0.43	25	0.81	6.9	<0.02	0.041	0.049	0.88	< 0.01	0.05
WS04-29_36738	Ч	Blubber	< 0.1	0.072	26	<0.02	< 0.1	0.28	6.8	1.7	3.3	<0.02	0.038	0.043	0.86	0.012	0.10
WS04-30_36739	Μ	Blubber	< 0.1	0.07	9.2	< 0.02	< 0.1	0.47	4.1	1.4	1.9	< 0.02	< 0.002	0.063	0.034	< 0.01	0.01
WS04-32_36745	Н	Blubber	< 0.1	0.11	13	<0.02	< 0.1	0.59	57	0.23	5.6	<0.02	< 0.002	0.052	0.17	0.013	0.01
WS04-33_36746	Ч	Blubber	< 0.1	0.07	7.5	<0.02	< 0.1	0.53	100	0.89	20	<0.02	0.039	0.044	1.2	0.031	0.02
WS04-34_36747	Н	Blubber	< 0.1	<0.07	16	<0.02	< 0.1	0.52	33	1.3	9.0	<0.02	0.036	0.035	1.0	0.011	0.04
WS04-34_36747	Ч	Liver	< 0.1	3.7	180	<0.02	< 0.1	8.6	44	0.32	19	0.73	7.3	0.09	50	< 0.01	1.04
WS04-34_36747	Ч	Kidney	< 0.1	0.78	150	0.021	< 0.1	5.4	34	0.13	5.3	0.033	18	0.04	6.1	< 0.01	0.45
WS04-35_36751	Н	Blubber	< 0.1	0.1	18	<0.02	< 0.1	0.53	9.7	0.73	5.4	<0.02	0.19	0.052	1.3	< 0.01	0.09
WS04-35_36751	Ч	Liver	< 0.1	4.8	250	<0.02	< 0.1	14	73	0.27	39	1.2	21	0.086	110	0.018	1.11
WS04-35_36751	F	Kidney	< 0.1	0.69	140	0.031	< 0.1	4.8	37	0.11	6.4	0.033	52	0.03	7.8	0.018	0.48
WS04-36_36752	ц	Blubber	< 0.1	0.084	18	<0.02	0.71	4.5	11	1.2	7.6	< 0.02	0.12	0.062	1.7	0.014	0.09
WS04-36_36752	F	Liver	< 0.1	3.7	190	<0.02	< 0.1	7.9	60	0.17	18	0.48	3.4	0.083	53	0.74	1.16
WS04-36_36752	Ц	Kidney	< 0.1	0.66	110	<0.02	<0.1	4.9	33	<0.07	5.3	0.033	17	0.05	8.1	0.15	0.60
* Hg:Se is the moli	ar ratio o	f the concent	trations of	f mercury a	ind seleni	um.											

Table :

Soxhlet extraction thimble. The blender container was cleaned between samples by though scrubbing with hot water and detergent, and rinsing with hot water, followed by acetone, toluene and dichloromethane. Before extraction, a range of isotopically labelled internal standards was added to each sample. Each sample was Soxhlet extracted with dichloromethane:hexane (1:1 v/v) for at least 16 h. The samples were evaporated to constant weight in a tared flask on a rotary evaporator. The lipid content was measured by difference. The samples were then subjected to clean-up as follows:

2.4.2. Organochlorine (OC) pesticides

The lipids were redissolved in hexane and partitioned with acetonitrile. The acetonitrile fraction was evaporated and residual lipids redissolved in hexane and chromatographed twice on 1 g columns of florisil, the pesticides being eluted with hexane:diethyl ether (82:18 v/v). The remaining lipids were removed by gel permeation chromatography (GPC) on a Phenomenex Envirosep ABC 300×7.8 mm GPC column using ethyl acetate:cyclohexane (1:1 v/v). The solvent was removed by nitrogen blowdown and the solution reconstituted in 100 µL of toluene containing the recovery standard ($^{13}C_{12}$ -CB) and analysed by HRGC-HRMS using the accurate mass ions given in Buckland et al (1998).

2.4.3. Polychlorinated biphenyls (PCBs)

The lipids were dissolved in hexane and removed by chromatography on a reactive multi-column containing sodium silicate and sulfuric acid impregnated silica gel by elution with hexane. The hexane was removed by nitrogen blowdown and the residue reconstituted in 100 μ L of nonane containing the recovery standards and analysed by HRGC-HRMS. All procedures for the analysis of PCBs followed the methods outlined in USEPA Method 1668A.

2.4.4. Instrumental

The HRGC-HRMS analyses were performed on an Agilent 6890 gas chromatograph equipped with a Phenomenex Zebron ZB5 60 m \times 0.25 mm id \times 0.25 µm phase thickness column using splitless injection, coupled to a Micromass Ultra high resolution mass spectrometer. All analyses were performed under the laboratory's IANZ accreditation (No. 131).

3. Results and discussion

3.1. Samples

A total of nineteen samples were analysed, comprising fourteen stranded and five bycaught specimens (Table 1). Table 3

Lipid content and organochlorine pesticide levels determined in the blubber of stranded and bycaught common dolphins from New Zealand waters between 1999 and 2005 (percentage and µg/kg wet weight, respectively)

Reference	Sex	Lipid%	α-HCH	β-НСН	ү-НСН	HCB	Dieldrin	Heptachlor	Heptachlor- epoxide	α -Chlordane	γ -Chlordane	<i>p,p</i> '-DDE	<i>p,p</i> '-DDD	<i>o,p</i> '-DDT	<i>p,p</i> '-DDT	Σddt
WS99-14_30447	М	57	< 0.8	2.3	<1.0	28.0	55.0	< 0.6	24.0	33.0	<2.0	3900	140.0	250.0	140.0	4430
WS00-01_30890	М	58	<1.0	2.6	<1.0	23.0	59.0	< 0.4	22.0	30.0	<2.0	3600	55.0	320.0	49.0	4024
WB02-01_32789	Μ	52	<1.0	<2.0	<2.0	14.0	19.0	< 0.2	12.0	15.0	<1.0	2000	59.0	79.0	64.0	2202
WS02-14_33100	Μ	68	<1.0	1.5	<1.0	28.0	61.0	< 0.2	11.0	11.0	<1.0	1100	120.0	43.0	120.0	1383
WB03-04_34086	М	62	< 0.5	1.7	< 0.7	16.0	34.0	< 0.2	13.0	14.0	<1.0	1300	83.0	71.0	84.0	1538
WB03-17_34705	Μ	70	< 0.7	1.6	< 0.9	20.0	37.0	< 0.6	8.3	10.0	< 5.0	1200	52.0	76.0	81.0	1409
WB03-18_34712	Μ	64	< 0.8	2.1	<1.0	22.0	32.0	< 0.4	17.0	14.0	<2.0	1300	110.0	110.0	100.0	1620
WB04-04_35613	М	39	<1.0	<2.0	<2.0	8.6	19.0	< 0.8	7.7	8.7	<4.0	1000	41.0	42.0	43.0	1126
WS04-19_36305	Μ	65	<1.0	<2.0	<2.0	12.0	54.0	<2.0	10.0	14.0	<10.0	740	60.0	35.0	16.0	851
WS04-29_36738	F	47	0.14	0.71	0.2	7.6	12.0	< 0.3	< 0.8	8.1	<3.0	150	8.1	21.0	14.0	193
WS04-30_36739	F	73	0.38	3.5	0.5	130.0	100.0	< 0.6	18.0	36.0	NQ	460	28.0	130.0	36.0	654
WS04-33_36746	F	52	< 0.2	< 0.4	< 0.2	5.3	6.5	< 0.7	<1.0	<7.0	< 6.0	69	6.7	10.0	8.5	94
WS04-34_36747	F	52	< 0.2	< 0.3	< 0.2	3.1	4.2	< 0.4	< 0.6	< 5.0	<4.0	110	7.6	13.0	9.7	140
WS04-35_36751	F	41	< 0.08	0.29	0.11	12.0	9.7	< 0.2	< 0.5	2.8	<3.0	42	4.6	5.9	6.0	59
WS04-36_36752	F	51	0.16	1.4	0.24	16.0	21.0	< 0.6	<1.0	11.0	< 5.0	270	19.0	30.0	18.0	337
WS05-06_36823	Μ	57	<1.0	2.0	<2.0	12.0	64.0	< 0.8	12.0	18.0	< 5.0	970	87.0	58.0	42.0	1157
WS05-26_37521	М	76	<1.0	2.8	<2.0	28.0	87.0	<1.0	17.0	23.0	<7.0	780	66.0	47.0	23.0	916

NQ=Not quantified.

Males (n=12) ranged from one to eleven years of age and from 118 to 227.5 cm in total body length. Females (n=7)ranged from less than one to over 10 years of age and from 99 to 200 cm in total body length (Table 1). No sex bias was evident in the stranded samples, with both males and females comprising 50% (n=7) of the total sample size. Sex bias was evident in the bycaught samples, with males comprising 100% (n=5) of the sample set (Table 1). The majority of the samples (n=11) originated from animals that had stranded within the Hauraki Gulf, New Zealand (Fig. 1.). Post-mortem examinations revealed decomposition levels were generally low; fresh (n=8), mild (n=7)and moderate (n=4) (see Table 1).

3.2. Trace elements

Concentrations of trace elements in liver, kidney and blubber are given in Table 2. Of the trace elements determined, chromium and nickel were not detected in any of the samples and concentrations of cobalt, tin and lead were generally low. Liver concentrations of copper and zinc were within the range of concentrations thought to represent homeostatic control (3 to 30 and 20 to 100 μ g/g wet weight, respectively (Law, 1996)). Concentrations of mercury ranged from 0.03 to 110 mg/kg wet weight with the lowest concentrations found in blubber and the highest in liver. Generally, mercury concentrations found in the blubber were relatively low, whereas mercury concentrations found in liver and kidney tissue were in line with those reported in other studies. The Hg:Se molar ratio in liver was approximately 1, reflecting the detoxification mechanism by which organic mercury is transformed and deposited as inert mercuric selenide (Law et al., 2001). Failure or overloading of this mechanism could result in toxic effects due to organic mercury ingested from prey (Law, 1996).

Much higher metal concentrations have been reported in three dolphin species from an area of South Australia affected by point source inputs, including a lead smelter (Lavery et al., in review). Inshore bottlenose dolphins (*Tursiops aduncus*) yielded the highest concentrations, whilst the levels of contamination in pelagic common dolphins (*Delphinus delphis*) were similar to those observed in the present study. In the Australian study, common dolphins showed maximum liver concentrations of cadmium, mercury and lead of approximately 11, 165 and 0.13 mg/kg wet weight, respectively. Maximum values in the present study were 21, 110 and 0.74 mg/kg wet weight in liver for cadmium, mercury and lead, respectively, with a maximum cadmium concentration in kidney of 52 mg/kg wet weight.

Comparatively high concentrations of cadmium in the liver and kidney of three stranded dolphins (WS04-34_36747, WS04-35_36751 and WS04-36_36752; 3.4 to 52 mg/kg wet weight) suggest a significant proportion of squid in the diet (Law, 1996). Stomach content analyses for these animals concur, revealing arrow squid (Nototodarus sp.) to be the most common prey item by percentage occurrence (Massey University, unpublished data). In contrast, a juvenile female common dolphin from the Gold Coast of Australia (RJM-04) yielded liver and kidney concentrations of 0.02 and 0.07 mg/kg wet weight, respectively, indicating a diet predominant in fish (Law et al., 2003). Apart from cadmium (0.38 mg/kg wet weight in liver) and detectable levels of chromium and nickel (0.21 and 0.31 mg/kg wet weight, respectively), the trace element concentrations observed in the New Zealand common dolphins were similar to those found in a 12 year old stranded adult female common dolphin from the UK (SW1998/104; Law et al., 2001). Mercury, selenium and arsenic levels observed herein for New Zealand common dolphins were in line with those previously reported for common dolphins (Law et al., 2006). A limited number of other data available from New Zealand, from an earlier investigation by Koemann et al. (1972), also concur. Zinc (30 to 40 mg/kg wet weight), arsenic (0.13 to 0.80 mg/kg wet weight), selenium (9.3 to 24 mg/kg wet weight) and mercury (35 to 72 mg/kg wet weight) concentrations in the liver of common dolphins reported by Koemann et al. (1972) were similar to those observed in the present study. Only cadmium (0.21 to 1.6 mg/kg wet weight) concentrations differed to those reported herein, again most likely resulting from dietary differences between the sampled dolphins.

3.3. Organochlorines and PCBs

Concentrations of organochlorine pesticides and chlorobiphenyls in blubber are listed in Tables 3 and 4 respectively. Of the organochlorines determined, dieldrin (up to 100 µg/kg wet weight), HCB (up to 130 µg/kg wet weight), o,p'-DDT (up to 320 µg/kg wet weight) and p,p'-DDE (up to 3900 µg/kg wet weight) were present at the highest concentrations. Sum DDT concentrations (p,p'-DDE+p,p'-DDD+o,p'-DDT+p,p'-DDT) ranged from 17 to 4430 µg/kg wet weight. The maximum value is considerably higher than the concentrations found in the UK (Law et al., 2001) and Australian (Law et al., 2003) common dolphins, whose Σ DDT concentrations (the three p,p'-isomers only) were 690 and 548 µg/kg wet weight, respectively.

Organochlorine concentrations in the blubber of reproducing female dolphins are usually lower than those

Fable 4
Chlorinated biphenyl levels determined in the blubber of stranded and bycaught common dolphins from New Zealand waters between 1999 and 2005 (µg/kg wet weight)

Reference	Sex	Lipid%	CB1	CB3	CB4	CB15	CB19	CB28	CB37	CB44	CB49	CB52	CB54	CB70
WS99-14_30447	М	57	0.0096	0.0081	< 0.033	0.053	NQ	0.8	0.06	0.57	0.8	8.5	< 0.02	0.53
WS00-01_30890	М	58	< 0.024	< 0.016	< 0.17	< 0.052	NQ	0.35	< 0.033	0.16	0.62	10	NQ	0.12
WB02-01_32789	М	52	< 0.007	0.0097	< 0.045	< 0.043	NQ	0.27	< 0.027	0.5	0.54	3.3	< 0.064	0.12
WS02-14_33100	М	68	0.015	0.015	< 0.04	< 0.046	NQ	3.0	< 0.031	1.3	2.1	7.2	< 0.038	0.76
WB03-04_34086	М	62	0.007	0.0076	< 0.029	< 0.025	NQ	0.35	< 0.024	0.56	0.67	3.3	< 0.017	0.13
WB03-17_34705	М	70	0.024	0.026	< 0.078	0.03	NQ	0.96	0.036	0.85	1.3	5.6	NQ	0.51
WB03-18_34712	М	64	0.013	0.019	< 0.042	< 0.032	NQ	0.7	0.029	0.36	0.61	4.6	< 0.033	0.21
WB04-04_35613	М	39	0.015	0.018	< 0.074	< 0.038	NQ	0.33	< 0.02	0.1	0.19	2.7	NQ	0.066
WS04-19_36305	М	63	0.012	0.018	< 0.086	< 0.041	NQ	0.81	0.055	1.0	2.5	7.7	NQ	0.73
WS04-28_36737	F	43	0.0012	0.0014	0.006	0.0065	0.0056	0.17	0.0073	0.15	0.21	0.38	0.0033	0.26
WS04-29_36738	F	47	NQ	0.0011	0.0055	0.006	0.0055	0.16	0.0088	0.16	0.23	0.74	0.002	0.2
WS04-30_36739	М	73	0.003	0.0023	0.012	0.01	0.026	0.99	0.013	1.1	1.2	4.7	0.0066	0.42
WS04-32_36745	F	44	0.0022	0.0015	0.017	0.007	0.022	0.65	0.0084	1.0	0.96	3.7	0.0061	0.6
WS04-33_36746	F	52	NQ	0.0014	0.0076	0.0047	0.0073	0.19	0.0057	0.11	0.21	0.42	0.0021	0.34
WS04-34_36747	F	52	0.0016	0.0014	0.0083	0.0072	0.0073	0.28	0.0092	0.14	0.26	0.5	0.004	0.24
WS04-35_36751	F	41	0.0013	0.00096	0.0098	0.004	0.0095	0.29	0.0057	0.14	0.27	0.59	0.0023	0.23
WS04-36_36752	F	51	NQ	0.0015	0.016	0.0066	0.02	0.58	0.0084	0.36	0.73	2.2	0.0047	0.43
WS05-06_36823	М	57	0.023	0.029	NQ	< 0.058	NQ	1.5	< 0.054	0.55	2.2	12	NQ	0.3
WS05-26_37521	М	76	0.014	0.019	0.11	< 0.032	NQ	4.0	0.048	1.7	4.7	14	NQ	1.6
Reference	Sex	Lipid%	CB74	CB77	CB81	CB99	CB101	CB104	CB105	CB110	CB114	CB118	CB123	CB126
WS99-14_30447	М	57	3.1	0.039	0.046	37	32	0.013	8.8	1.3	0.32	29	1.2	0.15
WS00-01_30890	М	58	3.1	0.069	< 0.029	49	28	0.017	8.3	0.71	0.24	30	1.4	0.2
WB02-01_32789	М	52	1.7	< 0.04	< 0.039	19	18	< 0.01	7.6	1.2	0.53	26	0.85	0.11
WS02-14_33100	М	68	7.3	0.13	0.11	31	43	0.009	17	6.2	0.89	54	1.2	0.097
WB03-04_34086	М	62	1.9	0.03	0.047	15	22	0.0077	7.4	2.1	0.42	25	0.7	0.073
WB03-17_34705	М	70	2.9	0.057	0.066	16	28	0.0093	7.7	2.2	0.42	29	0.75	0.082
WB03-18_34712	М	64	2.5	0.034	0.047	19	27	0.0084	8.9	1.3	0.45	32	0.71	0.061
WB04-04_35613	Μ	39	1.9	0.031	0.017	17	17	0.0042	5.7	0.56	0.23	19	0.47	0.066
WS04-19_36305	М	63	5.6	0.15	0.061	43	39	0.018	16	2.5	0.9	75	1.3	0.24
WS04-28_36737	F	43	0.23	0.022	0.012	1.4	1.8	0.0023	0.63	0.77	0.041	2.2	0.06	0.026
WS04-29_36738	F	47	0.31	0.019	0.016	2.0	3.0	0.0028	0.98	0.61	0.078	3.1	0.12	0.033
WS04-30_36739	М	73	1.8	0.042	0.093	8.1	18	0.014	4.8	3.4	0.39	15	0.5	0.11
WS04-32_36745	F	44	1.7	0.052	0.083	10	17	0.013	4.8	2.8	0.44	17	0.63	0.12
WS04-33_36746	F	52	0.37	0.023	0.015	2.6	2.6	0.0022	1.1	0.64	0.071	3.5	0.11	< 0.06
WS04-34_36747	F	52	0.38	0.027	0.016	3.1	2.9	0.0028	1.3	0.8	0.083	4.3	0.12	0.031
WS04-35_36751	F	41	0.37	0.019	0.014	2.4	2.3	0.002	0.96	0.64	0.058	3.3	0.082	0.017
WS04-36_36752	F	51	1.1	0.038	0.043	7.4	8.9	0.0059	3.4	1.5	0.26	11	0.36	0.061
WS05-06_36823	М	57	6.1	0.13	0.053	70	51	0.032	16	1.7	0.83	79	1.6	0.25
WS05-26_37521	М	76	11	0.21	0.12	114	93	0.041	26	6.3	1.5	109	2.3	0.3

Reference	Sex	Lipid%	CB138	CB153	CB155	CB156	CB157	CB167	CB169	CB170	CB180	CB183	GB187	CB188
WS99-14_30447	М	57	202	246	0.25	3.9	2.1	2.9	< 0.05	48	126	28	69	0.19
WS00-01_30890	М	58	298	444	0.43	5.4	2.7	3.8	< 0.043	76	221	44	134	0.36
WB02-01_32789	М	52	128	188	0.12	8.5	2.2	6.0	< 0.04	40	116	20	71	0.17
WS02-14_33100	М	68	134	171	0.17	11	2.5	6.1	0.083	30	73	15	46	0.13
WB03-04_34086	М	62	85	107	0.11	6.0	1.6	3.3	0.075	20	56	10	36	0.095
WB03-17_34705	М	70	103	142	0.084	6.1	1.6	5.7	0.073	26	72	12	46	0.11
WB03-18_34712	М	64	111	143	0.13	6.0	1.9	4.2	0.049	28	78	14	47	0.13
WB04-04_35613	М	39	111	141	0.1	3.7	1.6	2.9	< 0.03	30	79	14	50	0.14
WS04-19_36305	М	63	209	295	0.23	14	3.6	12	< 0.15	44	94	16	99	0.47
WS04-28_36737	F	43	7.0	8.4	0.029	0.53	0.14	0.35	0.014	2.8	9.2	1.8	5.3	0.017
WS04-29_36738	F	47	15	16	0.098	0.94	0.27	0.76	0.026	6.1	19	3.4	9.9	0.036
WS04-30_36739	М	73	56	61	0.35	2.7	0.93	2.0	0.059	12	36	7.8	22	0.075
WS04-32_36745	F	44	93	110	0.36	2.9	1.1	2.9	0.05	18	48	11	31	0.1
WS04-33_36746	F	52	13	14	0.063	0.82	0.2	0.43	0.023	5.7	13	2.4	6.4	0.023
WS04-34_36747	F	52	18	21	0.09	1.0	0.29	0.72	0.012	5.4	15	3.2	9.2	0.035
WS04-35_36751	F	41	9.6	10	0.037	0.62	0.15	0.33	0.012	2.4	6.4	1.4	3.9	0.015
WS04-36_36752	F	51	45	46	0.22	2.6	0.73	1.7	0.035	16	42	8.7	24	0.084
WS05-06_36823	Μ	57	342	527	0.3	12	4.4	11	< 0.056	74	170	31	163	0.69
WS05-26_37521	М	76	324	462	0.39	17	5.2	18	0.11	56	128	24	139	0.73
Reference	Sex	Lipid%	6 CB189	CB194	CB196	CB199	CB202	CB205	CB206	CB2	08 C	B209	Σ45CBs	Σ ICES7 ^a
WS99-14_30447	М	57	2.0	13	16	0.73	3.8	0.28	1.2	0.86	1	.0	892	644
WS00-01_30890	М	58	3.5	19	20	0.65	5.2	0.43	1.2	0.92	0	.64	1414	1031
WB02-01_32789	М	52	2.1	12	11	0.34	3.4	0.33	1.3	0.69	0	.4	691	480
WS02-14_33100	М	68	1.4	7.4	8.9	0.2	2.3	0.34	0.97	0.42	0	.16	686	485
WB03-04_34086	М	62	1.0	5.1	6.1	0.21	1.8	0.19	0.72	0.4	0.	.19	421	299
WB03-17_34705	М	70	1.3	5.6	6.2	0.2	2.0	0.2	0.66	0.31	0	.14	528	381
WB03-18_34712	М	64	1.3	7.7	7.5	0.27	2.4	0.28	0.89	0.47	0	.22	553	396
WB04-04_35613	М	39	1.4	8.4	8.9	0.22	2.5	0.3	0.9	0.44	0	.21	522	370
WS04-19_36305	М	63	2.2	8.7	8.3	0.28	4.6	0.32	0.99	0.67	0	.27	1010	721
WS04-28_36737	F	43	0.17	1.8	1.6	0.062	0.38	0.055	0.32	0.21	0	.31	48.9	29.2
WS04-29_36738	F	47	0.32	3.2	2.7	0.11	0.74	0.089	0.46	0.4	0.	.48	91.8	57.0
WS04-30_36739	Μ	73	0.46	2.0	1.9	0.12	0.84	0.071	0.21	0.19	0.	.086	268	192
WS04-32_36745	F	44	0.58	2.0	1.9	0.13	1.0	0.067	0.16	0.14	0	.048	386	289
WS04-33_36746	F	52	0.18	3.0	2.4	0.05	0.54	0.075	0.5	0.35	0	.58	76.1	46.7
WS04-34_36747	F	52	0.23	1.8	1.6	0.074	0.52	0.051	0.25	0.21	0.	.22	93.4	62.0
WS04-35_36751	F	41	0.11	1.2	1.1	0.046	0.29	0.04	0.27	0.22	0	.45	50.3	32.5
WS04-36_36752	F	51	0.7	6.6	5.7	0.25	1.6	0.16	0.94	0.7	0	.96	243	156
WS05-06_36823	М	57	4.0	18	20	0.55	7.8	0.66	2.0	1.3	0	.65	1634	1183
WS05-26_37521	М	76	2.8	10	11	0.36	6.0	0.38	0.9	0.73	0	.2	1597	1134

NQ=Not quantified.

^a The seven CB congeners included on the list developed by the International Council for the Exploration of the Sea (ICES) for comparative purposes are CB28, CB52, CB101, CB118, CB138, CB153 and CB180.

of adult males as a result of transplacental and lactational transfer of these lipophilic contaminants to the calves. In this case, Σ DDT concentrations in the blubber ranged from 17 to 337 and 654 to 4430 µg/kg wet weight in females and males, respectively. Similarly, Σ 45CB concentrations, the sum of the 45 congeners determined, ranged from 49 to 386 and 268 to 1634 µg/kg wet weight in females and males, respectively.

Borrell and Aguilar (2005) studied the transmission of organochlorine pesticides and chlorobiphenyls from a common dolphin mother to her calf, and estimated the degree of transfer. In the present study, parentage analyses allowed the identification of one motheroffspring pair (WS04-29_36738 and WS04-30_36739 respectively). In terms of blubber concentrations, Σ DDT and ICES7CB levels were both 3.4 times higher in the calf (a male yearling) compared to his respective mother (a 10.5 years old lactating female). The mean transmission of Σ DDTs and ICES7CBs between mother and offspring was calculated at 46% and 42% respectively. This is similar to that observed by Borrell and Aguilar (2005) who reported respective transmissions of 46% and 55% between a mother-calf pair off the south-western Mediterranean coast of Spain. In the present study, examination of the females ovaries revealed multiple corpora scars (Stockin, unpublished data), thus suggesting this may not have been her first calf. This is significant since offloading of contaminants via lactation is typically greater for the first born than for subsequent offspring (Borrell and Aguilar, 2005).

Previously, experimental data on aquatic mammals has been collated to derive dose-response relationships for the adverse health effects of PCB exposure (Kannan et al., 2000). The resulting dose-response relationships, based on experimental studies of PCB-induced immunological and reproductive effects in seals and otters have led to a proposed blubber total PCBs (based on the Aroclor 1254 formulation) threshold concentration for adverse health effects in all marine mammals of 17 mg/kg lipid weight. As analyses are now conducted on a congener basis, a conversion factor of $3\times$ the sum ICES 7 congeners (Table 4) and the total PCB concentration has been established to allow comparisons (Jepson et al., 2005). This relationship was used to estimate the increased risk of infectious disease mortality in porpoises from the UK (Hall et al., 2006). Applying the conversion factor to the data for the New Zealand dolphins, the overall range of total PCB concentrations is from 0.2 to 6.2 mg/kg lipid weight, well below the toxic effects threshold derived by Kannan et al. (2000).

The ICES list of seven congeners was derived specifically to allow comparisons to be made across

datasets in which, overall, different suites of congeners were determined. In this case, the ICES7 concentrations ranged from 29 to 289 and 192 to 1183 µg/kg wet weight in females and males, respectively. Comparative concentrations in the UK and Australian common dolphins were 4340 and 650 µg/kg wet weight, respectively (Law et al., 2001, 2003). As the UK animal was an adult female, 4340 µg/kg wet weight represents a concentration ca. 15× higher than the highest equivalent concentration in the female New Zealand dolphins. There are a limited number of other data available from New Zealand, from an earlier investigation by Jones et al. (1999). In that study, ICES7 CB concentrations in two adult male common dolphins were 227 and 1315 µg/kg wet weight — both within the range established in the present study. In one adult male dusky dolphin (Lagenorhyncus obscurus) the ICES7 CB concentration was 810 µg/kg wet weight and in six Hector's dolphins (Cephalorhyncus hectori) this ranged from 447 to 706 and 319 to 1916 µg/kg wet weight in females and males, respectively.

There are differences in the ICES7CB/ Σ DDT ratios at separate locations, reflecting the inconsistent patterns of use and sources of pollutants in each area. In the common dolphins from this study and those from Australia (Law et al., 2003) and the UK (Law et al., 2001), such variations can be observed. In the common dolphin from the UK the ratio is 6.3, whilst in Australia it is 1.19 and in New Zealand ranges from 0.15 to 1.7 (mean value 0.52). This reflects a greater use of PCBs in Europe than in Australasia and a relatively heavy use of DDT in agriculture in New Zealand. As outlined by Aguilar (1984), the ratio of the concentration of $p_{,p'}$ -DDE to the sum of the concentrations of p,p'-DDT, p,p'-DDD and p,p'-DDE (the DDE/ Σ DDT ratio) can be used to identify recent inputs of DDT as it degrades to DDE over time. In the New Zealand common dolphins this ratio ranges from 0.7 to 0.91, indicating that these contaminants result from historic usage of DDT in New Zealand agriculture. Jones and Giesy (2000) suggest such use has resulted in many agricultural soils in New Zealand having higher concentrations of pesticides (particularly DDT) than those seen in "background" soils. Additionally, these authors noted that the concentrations of organochlorines that have accumulated in some coastal cetacean species, such as Hector's dolphins, were close to those suspected to cause adverse effects in other animal species, but that the risks posed to open ocean marine mammals were small.

Coastal marine mammals such as Hector's and bottlenose dolphins (*Tursiops* spp.) are subject to many known stressors including coastal anthropogenic impacts. It is widely acknowledged that dolphins living in near-shore waters close to agricultural and industrial activity tend to accumulate higher concentrations of toxins (O'Shea, 1999). Conversely, the current conception for oceanic species such as common dolphins is that wider habitat usage places them at lower risk from inshore activities such as point source pollution, inshore fisheries and recreational vessel traffic. However, in the present study, CB concentrations for common dolphins span a similar range to those reported for Hector's dolphins. This may reflect higher usage of coastal waters by New Zealand common dolphins, thus highlighting the potential vulnerability of this species to coastal anthropogenic impacts.

Confounding factors are known to alter toxin loads and require consideration when examining the containment burdens of animals that have stranded, possibly due to ill health. We acknowledge toxin levels in specimens are variable with age and gender, and may change as a result of several different mechanisms, including decomposition (Borrell and Aguilar, 1990) and depletion of lipid reserves with disease or starvation (O'Shea, 1999). However, the examination of apparently healthy bycaught specimens, and our consideration of lipid content and body condition in the present study, alleviates many of these concerns. Thus, the authors believe the toxicity levels reported herein fairly represent pollutant levels present in New Zealand common dolphins.

4. Conclusions

The tendency for marine mammals such as common dolphins to accumulate and carry high burdens of environmental contaminants make these animals suitable bioindicators with which to monitor marine pollution in New Zealand waters. Despite this, few studies have described contaminant levels in New Zealand cetaceans. Our findings suggest concentrations of organochlorine pesticides in New Zealand common dolphins are within a similar range to those reported for Hector's dolphins, an inshore species typically considered to be more susceptible to coastal anthropogenic impacts. We also reveal pollutant transmission levels between a mother–calf pair concur with those previously reported for this species in northern hemisphere waters.

Acknowledgements

This research was funded by the New Zealand Department of Conservation (DoC), the Whale and

Dolphin Conservation Society (WDCS UK), Biscay Dolphin Research Programme (BDRP), Cetacean Society International (CSI) and AgriQuality Ltd. The authors particularly acknowledge Dan Breen (DoC), Nicola Hodgson (WDCS UK) and Harry van Enkevort, Phil Bridgen, and Emma Thompson (AgriQuality Ltd) who facilitated this research in numerous ways. We also thank Anton Van Helden (Te Papa), Denis Fairfax (DoC), Kirsty Russell (University of Auckland), Howard Ellis (Ministry for the Environment) and all fisheries observers and DoC rangers who assisted with the retrieval of carcasses. We are grateful to Wendi Roe, Monica Bando, Federico Sapiaz, Aurelie Castinel and Mike Hogan (Massey University) for their assistance during post-mortem examinations, and finally thank Graham Pierce, Florence Caurant, Jan Boon, Lawrence Pickston, Robin Dunkin and Trish Lavery for their various communications. This manuscript was improved by the constructive comments of two anonymous reviewers. KAS was funded by a Commonwealth Scholarship, and received financial assistance from the Institute of Natural Resources (Massey University) and the Royal Society of New Zealand (RSNZ). This work was conducted under a research permit issued by the New Zealand Department of Conservation. Access to bycaught animals was facilitated by the Conservation Services Programme (CSP), administered by the New Zealand Department of Conservation.

References

- Aguilar A. Relationship of DDE/DDT in marine mammals to the chronology of DDT input into the ecosystem. Can J Fish Aquat Sci 1984;41:840–4.
- Alquezar R, Markich SJ, Booth DJ. Effects of metals on condition and reproductive output of the smooth toadfish in Sydney estuaries, south-eastern Australia. Environ Pollut 2006;142:116–22.
- Berrow SD, Mchugh B, Glynn D, Mcgovern E, Parsons KM, Baird RW, et al. Organochloride concentrations in resident bottlenose dolphins (*Tursiops truncatus*) in the Shannon Estuary, Ireland. Mar Pollut Bull 2002;44:1296–313.
- Borrell A, Aguilar A. Loss of organochlorine compounds in the tissues of a decomposing stranded dolphin. Bull Environ Contam Toxicol 1990;43:46–53.
- Borrell A, Aguilar A. A review of organochlorine and metal pollutants in marine mammals from central and south America. J Cetacean Res Manag 1999;1:195–207 [Special Issue].
- Borrell A, Aguilar A. Mother–calf transfer of organochlorine compounds in the common dolphin (*Delphinus delphis*). Bull Environ Contamin Toxicol 2005;75:149–56.
- Buckland SJ, Ellis HK, Salter RT. Ambient concentrations of selected organochlorines in soils. Wellington, New Zealand: Ministry for the Environment; 1998.
- Coughlan J, Mirimin L, Dillane E, Rogan E, Cross TF. Isolation and characterization of novel microsatellite loci for the short-beaked common dolphin (*Delphinus delphis*) and cross-amplification in other cetacean species. Mol Ecol Notes 2006;6:490–2.

- De Guise S, Lagace A, Béland P. Tumors in St. Lawrence beluga whales (*Delphinapterus leucas*). Vet Pathol 1994;31:444–9.
- de Kock AC, Best PB, Cockcroft VG, Bosma C. Persistent organochlorine residues in small cetaceans from the east and west coast of southern Africa. Sci Total Environ 1994;154:153–62.
- Fossi MC, Marsili L, Lauriano G, Fortuna C, Canese S, Ancora S, et al. Assessment of toxicological status of a SW Mediterranean segment population of striped dolphins (*Stenella coeruleoalba*). Mar Environ Res 2004;58:269–74.
- Frodello JP, Romèo M, Viale D. Distribution of mercury in the organs and tissues of five toothed-whale species of the Mediterranean. Environ Pollut 2000;108:447–52.
- Geraci JR, Lounsbury VJ. Specimen and data collection. Marine mammals ashore: a field guide to strandings. Galveston, Texas: Texas A&M Sea Grant Publications; 1993. p. 175–228.
- Hall AJ, Hugunin K, Deaville R, Law RJ, Allchin CR, Jepson PD. The risk of infection from polychlorinated biphenyl exposure in the harbor porpoise (*Phocoena phocoena*): a case-control approach. Environ Health Perspect 2006;114:704–11.
- Haynes D, Carter S, Gaus C, Müller J, Dennison W. Organochlorine and heavy metal concentrations in blubber and liver tissue collected from Queensland (Australia) dugong (*Dugong dugon*). Mar Pollut Bull 2005;51:361–9.
- Hayteas DL, Duffield DA. High levels of PCB and *p*,*p*'-DDE found in the blubber of killer whales (*Orcinus orca*). Mar Pollut Bull 2000;40:558–61.
- Hernandez F, Serrano R, Roig-Navarro AF, Martinez-Bravo Y, Lopez FJ. Persistent organochlorines and organophosphorus compounds and heavy elements in common whale, *Balaenoptera physalus*, from the Western Mediterranean Sea. Mar Pollut Bull 2000;40: 426–33.
- Hobbs KE, Muir CG, Mitchell E. Temporal and biogeographic comparisons of PCBs and persistent organochlorine pollutants in the blubber of fin whales from Eastern Canada in 1971–1991. Environ Pollut 2001;114:243–54.
- Hoekstra PF, O'Hara TM, Fisk AT, Borgå K, Solomona KR, Muira DCG. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort–Chukchi Seas. Environ Pollut 2003;124:509–22.
- Jarman WM, Norstorm RJ, Muir DCG, Rosenberg B, Simon M, Baird RW. Levels of organochlorine compounds, including PCDDS and PCDFS, in the blubber of cetaceans from the west coast of North America. Mar Pollut Bull 1996;32:426–36.
- Jepson PD, Bennett PM, Deaville R, Allchin CR, Baker JR, Law RJ. Relationships between polychlorinated biphenyls and health status in harbor porpoises (*Phocoena phocoena*) stranded in the United Kingdom. Environ Toxicol Chem 2005;24:238–48.
- Jones PD, Geisy JP. Risk assessment of ambient concentrations of selected organochlorines in the New Zealand environment. Wellington, New Zealand: Ministry for the Environment; 2000.
- Jones PD, Hannah DJ, Buckland SJ, van Maanen T, Leathem SV, Dawson S, et al. Polychlorinated dibenzo-*p*-dioxins, dibenzofurans and polychlorinated biphenyls in New Zealand cetaceans. J Cetacean Res Manag 1999;1:157–67 [Special Issue].
- Kannan KL, Blankenship AL, Jones PD, Giesy JP. Toxicity reference values for the toxic effects of polychlorinated biphenyls to aquatic mammals. Hum Ecol Risk Assess 2000;6:181–201.
- Koemann JH, Peeter WHM, Smit CJ, Tjioe PS, De Goeij JJM. Persistent chemicals in marine mammals. TNO-Nieuws 1972:570–8.
- Karuppiah S, Subramanian A, Obbard JP. Organochlorine residues in odontocete species from the southeast coast of India. Chemosphere 2005;60:891–7.

- Kemper C, Gibbs P, Obendorf D, Marvanek S, Lenghaus C. A review of heavy metal and organochlorine levels in marine mammals in Australia. Sci Total Environ 1994;154:129–39.
- Kuiken T, Bennett PM, Allchin CR, Kirkwood JK, Baker JR, Lockyer CH, et al. PCBs, cause of death and body condition in harbour porpoises (*Phocoena phocoena*) from British waters. Aquat Toxicol 1994;28:13–28.
- Lavery P, Butterfield N, Kemper C, Reid R, Gaylard S. Metals and selenium in the liver, kidney and bone of three dolphin species stranded and by-caught in South Australia, 1988–2004. Sci Total Environ (in review).
- Law RJ. Metals in marine mammals. In: Beyer WN, Heinz GH, Redmon-Norwood AW, editors. Environmental contaminants in wildlife. Interpreting tissue concentrations. Boca Raton, USA: CRC Press Inc.; 1996. p. 357–76.
- Law RJ, Stinger RL, Allchin CR, Jones BR. Metals and organochlorides in sperm whales (*Physeter macrocephalus*) stranded around the North Sea during the 1994/1995 winter. Mar Pollut Bull 1996;32:72–7.
- Law RJ, Bennett ME, Blake SJ, Allchin CR, Jones BR, Spurrier CJH. Metals and organochlorines in pelagic cetaceans stranded on the coasts of England and Wales. Mar Pollut Bull 2001;42:522–6.
- Law RJ, Morris RJ, Allchin CR, Jones BR, Nicholson MD. Metals and organochlorines in small cetaceans stranded on the east coast of Australia. Mar Pollut Bull 2003;46:1206–11.
- Law RJ, Allchin CR, Mead LK. Brominated diphenyl ethers in the blubber of twelve species of marine mammals stranded in the UK. Mar Pollut Bullet 2005;50:344–59.
- Law RJ, Jepson PD, Deaville R, Reid RJ, Patterson IAP, Allchin CR, Jones, BR. Collaborative UK marine mammals stranding project: summary of contaminant data for the period 1993–2001. Science Series, Technical Report 131, Cefas, Lowestoft, United Kingdom, 2006.
- Mallory ML, Braune BM, Wayland M, Drouillard KG. Persistent organic pollutants in marine birds, arctic hare and ringed seals near Qikiqtarjuaq, Nunavut, Canada. Mar Pollut Bull 2005;50: 95–104.
- McKenzie C, Rogan E, Reid RJ, Wells DE. Concentrations and patterns of organic contamination in Atlantic white-sided dolphins (*Lagenorhynchus acutus*) from Irish and Scottish coastal waters. Environ Pollut 1997;98:15–27.
- Minh TB, Watanabe M, Nakata H, Tanabe S, Jefferson TA. Contamination by persistent organochlorides in small cetaceans from Hong Kong. Mar Pollut Bull 1999;39:383–92.
- Mirimin L, Coughlan J, Rogan E, Cross TF. Tetranucleotide microsatellite loci from the striped dolphin (*Stenella coeruleoalba* Meyen, 1833). Mol Ecol Notes 2006;6:493–5.
- O'Shea TJ. Environmental contaminants and marine mammals. In: Reynolds JE, Rommel SA, editors. Biology of marine mammals. Melbourne, Australia: Melbourne University Press; 1999. p. 485–536.
- Parsons ECM, Chan HM, Kinoshita R. Trace metal and organochlorine concentrations in a pygmy Bryde's whale (*Balaenoptera edeni*) from the South China Sea. Mar Pollut Bullet 1999;38:51–5.
- Reijnders PJH. Reproductive failure in common seals feeding on fish from polluted coastal waters. Nature 1986;324:456–7.
- Reijnders PJH, Aguilar A. Pollution and marine mammals. In: Perrin WF, Würsig B, Thewissen JCM, editors. Encyclopaedia of marine mammals. San Diego, USA: Academic Press; 2002. p. 948–57.
- Roots O, Zitko V, Roose A. Persistent organic pollutant patterns in grey seals (*Halichoerus grypus*). Chemosphere 2005;60:914–21.
- Rosel PE. PCR based sex determination in odontocete cetaceans. Conserv Genet 2003;4:647–9.

- Rosel PE, Dizon AE, Heyning JE. Genetic analysis of sympatric morphotypes of common dolphins (genus *Delphinus*). Mar Biol 1994;119:159–67.
- Rothschild RFN, Duffy LK. Mercury concentrations in muscle, brain and bone of western Alaskan waterfowl. Sci Total Environ 2005;349:277–83.
- Ryan PG, Connell AD, Gardner BD. Plastic ingestion and PCB's in seabirds: is there a relationship? Mar Pollut Bull 1988;19:174–6.
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbour Laboratory Press; 1989.
- Schwacke LH, Voit EO, Hansen LJ, Wells RS, Mitchum GB, Hohn AA, et al. Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (*Tursiops truncatus*) from the southeast United States coast. Environ Toxicol Chem 2002;21:2752–64.
- Siebert U, Joiris C, Holsbeek L, Benke H, Failing K, Frese K, et al. Potential relation between mercury concentrations and necropsy findings in cetaceans from German waters of the North and Baltic seas. Mar Pollut Bull 1999;38:285–95.
- Slooten E. Age, growth, and reproduction in Hector's dolphins. Can J Zool 1991;69:1689–700.
- Subramanian A, Tanabe S, Tatsukawa R, Saito S, Miyazaki N. Reduction in the testosterone levels by PCBs and DDE in Dall's

porpoises of northwestern North Pacific. Mar Pollut Bull 1987;18:643-6.

- Vetter W, Scholz E, Gaus C, Müller JF, Haynes D. Anthropogenic and natural organohalogen compunds in blubber of dolphins and dugons (*Dugong dugon*) from northeastern Australia. Arch Environ Contam Toxicol 2001;41:221–31.
- Watanabe M, Tanabe S, Miyazaki N, Petrov EA, Jarman WM. Contamination of Tris (4-Chlorophenyl) methane and Tris (Chlorophenyl) methanol in marine mammals from Russia and Japan: body distribution, bioaccumulation and contamination. Mar Pollut Bull 1999;39:393–8.
- Wells RS, Tornero V, Borrell A, Aguilar A, Rowles TK, Rhinehart H, et al. Integrating life-history and reproductive success data to examine potential relationships with organochlorine compounds for bottlenose dolphins (*Tursiops truncatus*) in Sarasota Bay, Florida. Sci Total Environ 2005;349:106–19.
- Ylitalo GM, Stein JE, Hom T, Johnson LL, Tilbury KL, Hall AJ, et al. The role of organochlorines in cancer-associated mortality in California sea lions (*Zalophus californianus*). Mar Pollut Bull 2005;50:30–9.
- Zhou JL, Salvador SM, Lui YP, Sequeira M. Heavy metals in the tissues of common dolphins (*Delphinus delphis*) stranded on the Portuguese coast. Sci Total Environ 2001;273:61–76.